Enhanced Stability of α-Amylase via Immobilization onto Chitosan-TiO2 Nanocomposite

نویسندگان

  • V. U. Bindu
  • P. V. Mohanan
چکیده

low stability, high cost and high selectivity towards the reaction conditions, they are limited to industrial applications [1-3]. In order to facilitate their usage in industrial applications several developments have been done in the field of enzyme technology during the last two decades [4]. Immobilization of enzymes on solid supports has become most familiar technique after Nelson and Griffin have done the immobilization of invertase onto charcoal hydrolyses sucrose via adsorption in 1961 [5]. Immobilization provides many advantages, such as continuous operations in enzyme reactor, enhanced stability, reusability and easy separation from reaction mixture [6]. The introduction of immobilized catalysts has greatly improved both the technical performance of the industrial processes and their economy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Textural and Structural Characterizations of Mesoporous Chitosan Beads for Immobilization of Alpha-Amylase: Diffusivity and Sustainability of Biocatalyst

In the present study, textural and structural characterizations of chitosan bead for immobilization of alpha amylase were studied in detail by N2 adsorption–desorption, Microspore Analysis (MP), Barrett–Joyner–Halenda (BJH) plots and Field Emission Scanning Electron Microscope (FESEM) observations. Pore structure observation revealed chemical activation of chitosan bead by glutaralde...

متن کامل

Synthesis and Characterization of Polyaniline-Polystyrene-Chitosan/Zinc Oxide Hybrid Nanocomposite

A hybrid nanocomposite composed of polyaniline-polystyrene-chitosan/zinc oxide was prepared via a simple in situ polymerization method. The synthesized copolymers were analyzed using Fourier Transform InfraRed (FT-IR), and UltraViolet-Visible (UV–Vis) spectroscopies, ThermoGravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffracti...

متن کامل

A Comparative Study of Activity and Stability of the Free and the Immobilized Endoglucanase from Alicyclobacillus Acidocaldarius

AaCel9A [β-1,4-endoglucanase, (E.C:3.2.1.4)], was immobilized onto glutaraldehyde activated chitosan macrosphere by covalent attachment. The properties of the immobilized AaCel9A were investigated by determining the optimum pH and optimum temperature for activity, thermal stability, and kinetic parameters. The immobilization process shifted the enzyme’s optimum temperature from 65 °C for the fr...

متن کامل

α-Amylase immobilization onto functionalized graphene nanosheets as scaffolds: Its characterization, kinetics and potential applications in starch based industries

α-Amylase is imperative for starch and its deriviatized industries. Functionalized graphene sheets were tailored and optimized as scaffold for α-amylase immobilization using Response Surface Methodology based on Box-Behnken design, with an overall immobilization efficiency of 85.16%. Analysis of variance provided adequacy to the mathematical model for further studies. Native and immobilized fun...

متن کامل

Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous

In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017